
Jiajie Yao, Dec 2020

CUDA GRAPH IN TENSORFLOW

2

CONTENT

What’s CUDA Graph

How to Use CUDA Graph

Launch Overhead in TensorFlow

Integrate CUDA Graph into TensorFlow

Performance

3

WHAT’S CUDA GRAPH

Reduce Launch Overheads

What Problem CUDA Graph Solves

Time

Launch
A

A B C D EId
le

Id
le

graph launch

A B C D E

Launch
B

Launch
C

Launch
D

4

WHAT’S CUDA GRAPH

Stream Launch

Stream Launch vs Graph Launch

https://developer.nvidia.com/gtc/2020/video/s21760

5

WHAT’S CUDA GRAPH

Graph Launch (Pre-Ampere)

Stream Launch vs Graph Launch

CUDA Graph Launch

cudaGraphLuanch(g1, s1)

Stream Queues Grid Management Execution

…
…
…
…
…

A
B

Block A0

SM 0

Block A1

SM 1

A B C D
C

D

Grid CompletionOther Dependencies

https://developer.nvidia.com/gtc/2020/video/s21760

6

WHAT’S CUDA GRAPH

Graph Launch (Ampere)

Stream Launch vs Graph Launch

CUDA Graph Launch

cudaGraphLuanch(g1, s1)

Stream Queues Grid Management Execution

…
…
…
…
…

A
B

Block A0

SM 0

Block A1

SM 1

A

B

C

D
C

D

Full Graph
Completion

Graph Upload Grid Upload Kernel Upload

https://developer.nvidia.com/gtc/2020/video/s21760

7

WHAT’S CUDA GRAPH

Launch overhead comparison (test using empty kernel)

A100 GPU *

Graph with 32 nodes

Stream Launch vs Graph Launch

host (ms) device (ms) host (ms) device (ms)

1 striaght line 4.43 28.12 65.25 60.67 14.7 2.2

2 two branches 3.17 15.47 69.25 83.46 21.8 5.4

3 fork and join 4.28 21.32 93.75 161.79 21.9 7.6

Pattern

graph stream

host speedup device speedup

1

2

32

…

1

2

16

…

17

31
…

32

1

2

4

3

5

7

6

…

8

HOW TO USE CUDA GRAPH

❑ Define a CUDA Graph

❑ Stream Capture

❑ CUDA Graph API

❑ Instantiate a CUDA Graph

❑ Call cudaGraphInstantiate(…)

❑ Launch the CUDA Graph executable instance

❑ Call cudaGraphLaunch(…)

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html

9

HOW TO USE CUDA GRAPH
Define a CUDA Graph

Graph APIsStream Capture

cudaStreamBeginCapture(stream1);
kernel_A<<< ..., stream1 >>>(...);

cudaEventRecord(event1, stream1);
cudaStreamWaitEvent(stream2, event1);

kernel_B<<< ..., stream1 >>>(...);
kernel_C<<< ..., stream2 >>>(...);

cudaEventRecord(event2, stream2);
cudaStreamWaitEvent(stream1, event2);

kernel_D<<< ..., stream1 >>>(...);

// End capture in the origin stream
cudaStreamEndCapture(stream1, &graph);

// Create the graph - it starts out empty
cudaGraphCreate(&graph, 0);

cudaGraphAddKernelNode(&a, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&b, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&c, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&d, graph, NULL, 0, &nodeParams);

// Now set up dependencies on each node
cudaGraphAddDependencies(graph, &a, &b, 1); // A->B
cudaGraphAddDependencies(graph, &a, &c, 1); // A->C
cudaGraphAddDependencies(graph, &b, &d, 1); // B->D
cudaGraphAddDependencies(graph, &c, &d, 1); // C->D

stream1 stream2

10

HOW TO USE CUDA GRAPH
CUDA Graph Node Types

Kernel

CPU function call

Memory copy

Memset

Empty node

Child graph

X

Y

Z

A

B C

D

X

Y

Z

A

B

C

Empty

Node

11

LAUNCH OVERHEAD IN TENSORFLOW

Node A is ready to Run

ready_nodes = [A,]

Call ScheduleReady(read_nodes) # [A,]

TF op Scheduling

F

C

A

B

E

D

12

LAUNCH OVERHEAD IN TENSORFLOW

ScheduleReady(read_nodes): # [A,], thread 1

for node in read_nodes: # [A,], thread 1

Process (node) # A, thread 2

TF op Scheduling

F

C

A

B

E

D

13

LAUNCH OVERHEAD IN TENSORFLOW

Process(node): # A

inline_ready = [node,] # A,

while inline_ready no empty:

node = pop(inline_ready)

device.Compute(op_kernel, ctx) *

ready_nodes = [B, C, D]

ScheduleReady([B, C, D], inline_ready) # thread 2

TF op Scheduling

F

C

A

B

E

D

* The process of OpKernal (sync op)

14

LAUNCH OVERHEAD IN TENSORFLOW

ScheduleReady(read_nodes, inline_ready): # [B, C, D], thread 2

for node in ready_nodes: # [B, C, D], thread2

if node is expensive:

Process (node) # thread 3,4,…

else:

inline_ready.push_back(node)

TF op Scheduling

F

C

A

B

E

D

15

LAUNCH OVERHEAD IN TENSORFLOW

Expensive

Inexpensive

May use up to 4 threads to compute the graph

T1, T2, T3 may launch kernels simultaneously

❑ Multiple threads launching could significantly increase the launch overhead

❑ If multiple threads are executing session run, the overhead is even worse

TF op Scheduling

F

C

A

B

E

D
t3

t1

t2

t4

16

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Use only 1 stream for Compute, H2D, D2H, D2D

Disable syncs during session runs

Syncs are not necessary, as in capture mode, all GPU operations are not executed but just recorded

Synchronize happens during stream switch (e.g. scheduling from compute stream to copy stream)

TF do the synchronization on GPU by building dependencies between the copy streams and the compute stream
(using CUDA Events)

Memory management

Hold the Tensors allocated during capturing

Tensor reusing

Overview

17

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Use only 1 stream for Compute, H2D, D2H, D2D

Simplify the capture process, no need to use CUDA Events to build the dependencies

Pitfall: The original Graph flattens into a straight line, no parallelism between branches, nor between memcpy nodes
and computing nodes (this issue can be solved by using multiple-graphs and multiple-streams)

One Stream Executing

H2D

H2D

A

B

C D2H H2D H2D A B C H2D

18

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Use only 1 stream for Compute, H2D, D2H, D2D

In DirectSession::EnableGraphCaptureMode(…), set single stream for GPU device.

tensorflow/core/common_runtime/gpu/gpu_device.cc

One Stream Executing

#ifdef GOOGLE_CUDA

// For enabling cuda-graph

void BaseGPUDevice::SetSingleStream(){

if(stream_catpure_mode_) return;

stream_backup_ = *stream_;

stream_->device_to_host = stream_->host_to_device = stream_->compute;

size_t d2d_size = stream_->device_to_device.size();

for(size_t i = 0; i < d2d_size; i ++){

stream_->device_to_device[i] = stream_->compute;

}

stream_->compute->SetStreamCaptureMode(true);

device_context_->stream_ = stream_->compute;

device_context_->host_to_device_stream_ = stream_->host_to_device;

device_context_->device_to_device_stream_ = stream_->device_to_device;

device_context_->device_to_host_stream_ = stream_->device_to_host;

}

void BaseGPUDevice::ResetStreams(){

if(! stream_catpure_mode_) return;

stream_->compute->SetStreamCaptureMode(false);

*stream_ = stream_backup_;

device_context_->stream_ = stream_->compute;

device_context_->host_to_device_stream_ = stream_->host_to_device;

device_context_->device_to_device_stream_ = stream_->device_to_device;

device_context_->device_to_host_stream_ = stream_->device_to_host;

gpu_device_info_->stream = stream_->compute;

}

19

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Each Graph has a “Tensor Holder” object which holds the tensors (allocated during session run), so memory for
subsequent CUDA Graph launch and for normal session runs are isolated

Tensor Holder is also responsible for reducing memory footprint (by reusing tensors)

Memory Management

tensorflow/core/common_runtime/direct_session.cc : DirectSession::RunInternal

……

// create tensor holder before the scheduling
TensorHolder * tensor_holder = nullptr;
if(cuda_graph_capture_mode_){

TF_RETURN_IF_ERROR(GetTensorHolder(&tensor_holder));
}

……

#ifdef GOOGLE_CUDA
if(cuda_graph_capture_mode_){

……

// hold tensors for both CPU and GPU
args.tensor_holder = tensor_holder;

}
#endif

item.executor->RunAsync(args, barrier->Get());

tensorflow/core/common_runtime/executor.cc : ExecutorState::Process

……

// Synchronous computes.

OpKernelContext ctx(¶ms, item.num_outputs);

if(tensor_holder){
ctx.tensor_holder = tensor_holder;

}

nodestats::SetOpStart(stats);

……

* Similar changes will be applied to Async computes

20

INTEGRATE CUDA GRAPH INTO TENSORFLOW

TF dynamically allocate output tensors via OpKernelContext

OpKernelContext will check if it can resue Tensors, and tensor holder will hold newly allocated tensors (in Capture Mode)

Memory Management

tensorflow/core/framework/op_kernel.cc

Status OpKernelContext::allocate_tensor(
DataType type, const TensorShape& shape, Tensor* out_tensor,
AllocatorAttributes attr, const AllocationAttributes& allocation_attr) {

if(shape.num_elements() > 0 && tensor_holder){
Tensor reuse_tensor = tensor_holder->FindUsableTensor(type, shape);
if(reuse_tensor.TotalBytes() > 0){

out_tensor->shape_ = shape;
out_tensor->set_dtype(type);
if(out_tensor->buf_){

out_tensor->buf_->Unref();
}
out_tensor->buf_ = reuse_tensor.buf_;
out_tensor->buf_->Ref();

return Status::OK();
}

}

……

tensorflow/core/framework/op_kernel.cc : OpKernelContext::allocate_tensor

Tensor new_tensor(a, type, shape,
AllocationAttributes(allocation_attr.no_retry_on_failure,

/* allocation_will_be_logged= */ true,
allocation_attr.freed_by_func));

……

if(tensor_holder){
if(new_tensor.AllocatedBytes() > 0){

tensor_holder->Add(&new_tensor);
}

}

*out_tensor = std::move(new_tensor);
return Status::OK();

21

INTEGRATE CUDA GRAPH INTO TENSORFLOW

After capturing, post process the CUDA Graph

❑ Validation of the Graph

❑ If the graph contains extra D2H or H2D nodes (besides the input/output tensor), then it may have uncaptured CPU operations,
which could make the Graph invalid

❑ Each H2D node in the graph, is either corresponding to an input tensor or const* CPU tensor (given specified input shapes,
generated by shape related operations on CPU, e.g. concat/shuffle of dims) which is held by Tensor Holder

❑ Each D2H node in the graph, is corresponding to an output tensor

❑ H2D nodes removal

❑ Remove the H2D nodes corresponding to input tensors, and record the (host_src --> gpu_dst) mappings for the input tensors

❑ Eliminate the needs to do extra H2H (host to host) copies before launching the CUDA Graph, and user is responsible for the H2D
copies of input data based on the (host_src --> gpu_dst) mapping

❑ Instantiate the CUDA Graph

❑ Create the Executable CUDA Graph instance

Post Capture Process

* The solution can handle CPU operations which process shape data (most shape info is generated on CPU, so there will no be corresponding D2H nodes, if the input shapes do
not change, we can view these info as const, and these info will be built into the launch parameters of the kernel nodes in the captured graph)

22

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Graphs and Executable Graph Instances (and the corresponding tensor holders) are held by Direct Session object

Get a Graph by specifying the model name and the graph index

Specify the captured model name in DirectSession::EnableGraphCaptureModel(model_name)

After capturing, the Graph and Executable Graph Instances are appended to the vector indexed by “model_name”

DirectSession::DestroyCudaGraphs() will destroy the CUDA Graphs and corresponding tensor holders (release memory)

Graph Management

tensorflow/core/common_runtime/direct_session.h

class DirectSession : public Session {
….

// holds the tensors allocated during graph capturing
// model_name --> tensor_holders
// for each model, multiple graphs can be captured,
// so we can run multiple graph instances in parallel

std::map<std::string, std::vector<TensorHolder>> cuda_graph_tensor_holders_;
std::map<std::string, std::vector<cudaGraph_t>> cuda_graphs_;
std::map<std::string, std::vector<cudaGraphExec_t>> cuda_graph_instances_;

….

};

23

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Capture

Enable Capture Mode: session->EnableGraphCapture(“model_name”)

Call session->run (call multiple times to capture multiple graphs for the specific model)

Disable Capture Mode: session->DisableGraphCapture()

Repeat the above steps to capture graphs for other models

Launch

Get src->dst mappings for the H2D nodes corresponding to the input tensors

Copy real inputs to GPU (based on the src->dst mappings)

Launch graphs into different streams, session->RunCudaGraph(“model_name”, graph_idx, stream)

Do H2H copy for the results (optional)

Workflow

24

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Capture Graph

Workflow

Input_1 Input_2
Output

(not allocated)

Execute session run
in In Capture Mode

User: Prepare input tensors and output tensors, output
tensors are just empty tensors for now, they will be
allocated after session run

Input_1 Input_2
Output

(allocated)

H2D H2D kernel kernel kernel D2H…

Removed H2D nodes, with
src addresses pointing to
Input1 and Input2

Dst address pointing
to Output

Captured CUDA Graph (with SRC --> DST mapping info)

src --> dst mapping
input_1 host address : dst device address
Input_2 host address : dst device address

Node dependencies

Data flow

25

INTEGRATE CUDA GRAPH INTO TENSORFLOW

Launch Graph

Workflow

New

Input_1

New

Input_2

Output

(CUDA Graph)

kernel kernel kernel D2H…

Dst address pointing
to Output

Captured CUDA Graph (with SRC --> Dst mapping info)

src --> dst mapping
input_1 host address : dst device address
Input_2 host address : dst device address

OutputStep1: User initiates H2D
copies for new input1 and
input2 (given the src -->
dst mapping)

Step2: Launch the CUDA
Graph (the CUDA graph
contains the H2D node
which copy results back to
host)

This is the same
tensor used for
capturing

Step3: User does H2H
copy, send to results to a
specified output tensorHost

Device

26

INTEGRATE CUDA GRAPH INTO TENSORFLOW

❑ How to “record” the operations on CPU – Stream Capture only records GPU operations (kernel launch and memory
copy)

❑ How to efficiently update the parameters of the captured graphs (e.g. changing of batch size or input shapes, will
change the kernels/parameters to be used)

❑ Direct updating of parameters of nodes in the CUDA Graph executable instance is almost impossible when use libs as the kernel
signatures are unknown

Future Work

27

PERFORMANCE

batch size TF(3,3) TF(1,3) TF(*,3) TF(1,8) TF(3,1) TF(1,1) TF(*,3) CUDA Graph

64 1035 1174 415 1116 514 882 441 4155 (3.5X)

200 617 1020 403 1046 413 704 419 2979 (2.8X)

800 369 664 361 672 327 453 355 1184 (1.7X)

1600 314 432 308 433 301 358 287 727 (1.6X)

An MLP model

• QPS was tested for this model (Queries per second)
• Tested on Nvidia-T4 GPU PCIE 16G
• TF(M, N) : means that for each session, there are M threads used for launching GPU kernel, and there are N threads call session runs simultaneously

By default, TF use all available threads on the system to schedule operations (and do kernel launches), TF(*, N) represents the default setting
we can set the number of threads used for kernel launching (or more precisely, for processing GPU operations) by exporting following env variables:
$ export TF_GPU_THREAD_MODE=gpu_shared # or gpu_private, gpu_shared – all GPU devices share the thread pool, gpu_private – each device uses its own pool
$ export TF_GPU_THREAD_COUNT=M

• In the CUDA graph case, 3 graphs and 3 CUDA streams are used
• The speed up data is calculated by comparing the QPS got from CUDA Graph launch and the best QPS got from TF

